CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Discussion 6A

1. How many polynomials?

Let P(x) be a polynomial of degree 2 over GF(5). As we saw in lecture, we need d + 1 distinct points to determine a unique *d*-degree polynomial.

- (a) Assume that we know P(0) = 1, and P(1) = 2. Now we consider P(2). How many values can P(2) have? How many distinct polynomials are there?
- (b) Now assume that we only know P(0) = 1. We consider P(1), and P(2). How many different (P(1), P(2)) pairs are there? How many different polynomials are there?
- (c) How many different polynomials of degree *d* over GF(p) are there if we only know *k* values, where $k \le d$?

2. Lagrange Interpolation

Find a unique real polynomial p(x) of degree at most 3 that passes through points (-1,3), (0,1), (1,2), and (2,0) using Lagrange interpolation.

- (a) Find $\Delta_{-1}(x)$ where $\Delta_{-1}(0) = \Delta_{-1}(1) = \Delta_{-1}(2) = 0$ and $\Delta_{-1}(-1) = 1$.
- (b) Find $\Delta_0(x)$ where $\Delta_0(-1) = \Delta_0(1) = \Delta_0(2) = 0$ and $\Delta_0(0) = 1$.
- (c) Find $\Delta_1(x)$ where $\Delta_1(-1) = \Delta_1(0) = \Delta_1(2) = 0$ and $\Delta_1(1) = 1$.
- (d) Find $\Delta_2(x)$ where $\Delta_2(-1) = \Delta_2(0) = \Delta_2(1) = 0$ and $\Delta_2(2) = 1$.
- (e) Reconstruct p(x) by using a linear combination of $\Delta_{-1}(x)$, $\Delta_0(x)$, $\Delta_1(x)$ and $\Delta_2(x)$.

3. Secret Sharing

Suppose the Oral Exam questions are created by 2 TAs and 3 Readers. The answers are all encrypted, and we know that:

- Both TAs should be able to access the answers
- All 3 Readers can also access the answers
- One TA and one Reader should also be able to do the same

Design a Secret Sharing scheme to make this work.

4. Secrets in the United Nations

The United Nations (for the purposes of this question) consists of n countries, each having k representatives. A vault in the United Nations can be opened with a secret combination s. The vault should only be opened in one of two situations. First, it can be opened if all n countries in the UN help. Second, it can be opened if at least m countries get together with the Secretary General of the UN.

- (a) Propose a scheme that gives private information to the Secretary General and *n* countries so that *s* can only be recovered under either one of the two specified conditions.
- (b) The General Assembly of the UN decides to add an extra level of security: in order for a country to help, all of the country's *k* representatives must agree. Propose a scheme that adds this new feature. The scheme should give private information to the Secretary General and to each representative of each country.

5. Sanity check!

- (a) Alice wants to send a message of length 10 to Bob over a lossy channel. What is the degree of the unique polynomial she should use to encode her message?
- (b) Alice sent Bob the values of the above polynomial at 16 distinct points. How many erasure errors can Bob recover from?
- (c) How many general errors can Bob recover from?