CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Discussion 6B

1. Polynomial Intersections

Polynomial intersections Find (and prove) an upper-bound on the number of times two distinct degree d polynomials can intersect. What if the polynomials $\tilde{A}\dot{Z}$ degrees differ?

2. How many polynomials?

Let P(x) be a polynomial of degree 2 over GF(5). As we saw in lecture, we need d + 1 distinct points to determine a unique *d*-degree polynomial.

- (a) Assume that we know P(0) = 1, and P(1) = 2. Now we consider P(2). How many values can P(2) have? How many distinct polynomials are there?
- (b) Now assume that we only know P(0) = 1. We consider P(1), and P(2). How many different (P(1), P(2)) pairs are there? How many different polynomials are there?
- (c) How many different polynomials of degree *d* over GF(p) are there if we only know *k* values, where $k \le d$?

3. Remainder Riddles

There exists a polynomial (over GF(7)) p(x) that has a remainder of 3 when divided by x - 1, a remainder of 1 when divided by x + 1, and a remainder of 2x + 1 when divided by $x^2 - 1$.

Mark one: TRUE or FALSE.

4. Secret Sharing

Prof. Seshia would like to share a secret number *s* among us, where *s* could be any integer from 0 to 10. He chose a polynomial with degree 1 such that $P(0) \equiv s \pmod{11}$, but he only shared P(1) with your GSI. Another key is on your hands. The way he distributed the second key w = P(2) ($0 \le w \le 58$) is by choosing a polynomial Q(x) of degree ≤ 2 such that $Q(0) \equiv w \pmod{59}$. Here are your *x* and Q(x):

- (a) At least how many students would we need in order to find w?
- (b) Please find *w*.
- (c) Please help your GSI find the secret number *s*.

5. Berlekamp-Welch algorithm

In this question we will go through an example of error-correcting codes with general errors. We will send a message (m_0, m_1, m_2) of length n = 3. We will use an error-correcting code for k = 1 general error, doing arithmetic modulo 5.

- (a) Suppose $(m_0, m_1, m_2) = (4, 3, 2)$. Use Lagrange interpolation to construct a polynomial P(x) of degree 2 (remember all arithmetic is mod 5) so that $(P(0), P(1), P(2)) = (m_0, m_1, m_2)$. Then extend the message to lengeth n + 2k by appending P(3), P(4). What is the polynomial P(x) and what is the message $(c_0, c_1, c_2, c_3, c_4) = (P(0), P(1), P(2), P(3), P(4))$ that is sent?
- (b) Suppose the message is corrupted by changing c_0 to 0. We will locate the error using the Berlekamp–Welsh method. Let $E(x) = x + b_0$ be the error-locator polynomial, and $Q(x) = P(x)E(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ be a polynomial with unknown coefficients. Write down the system of linear equations (involving unknowns a_0, a_1, a_2, a_3, b_0) in the Berlekamp–Welsh method. You need not solve the equations.
- (c) The solution to the equations in part (b) is $b_0 = 0, a_0 = 0, a_1 = 4, a_2 = 4, a_3 = 0$. Show how the recipient can recover the original message (m_0, m_1, m_2) .