CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 7a

1. Countability Basics

- (a) Is $f : \mathbb{N} \to \mathbb{N}$, defined by $f(n) = n^2$ an injection (one-to-one)? Briefly justify.
- (b) Is $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^3 + 1$ a surjection (onto)? Briefly justify.

2. Count it!

For each of the following collections, determine and briefly explain whether it is finite, countably infinite (like the natural numbers), or uncountably infinite (like the reals):

- (a) The integers which divide 8.
- (b) The integers which 8 divides.
- (c) The functions from \mathbb{N} to \mathbb{N} .
- (d) Computer programs that halt.
- (e) Computer programs that always correctly tell if a program halts or not.
- (f) Numbers that are the roots of nonzero polynomials with integer coefficients.
- (g) The number of points in the unit square $[0, 1] \times [0, 1]$
- (h) Computer programs that correctly return the product of their two integer arguments

3. Countable and Uncountable.

- (a) Give a bijection from the real number interval (1,∞) to the real number interval (0,1).
 (Notice the intervals are open.)
- (b) Given an n×n matrix A where the diagonal consist of alternating 1's and 0's starting from 1, A[0,0] = 1, describe a n length vector from {0,1}ⁿ that is not equal to a row in the matrix. (Hint: the all ones vector or the all zeros vector of length n could each be rows in the matrix.)

4. Computability.

- (a) The problem of determining whether a program halts in time 2^{n^2} on an input of size *n* is undecidable. (True or False.)
- (b) There is no computer program DEAD which takes a program P, an input, x, and a line number, n, and determines whether the nth line of code is executed when the program P is run on the input x. (True or False.)