
CS 70 Discrete Mathematics and Probability Theory
Fall 2016 Seshia and Walrand HW 4

1. Sundry
Before you start your homework, write down your team. Who else did you work with on this
homework? List names and email addresses. (In case of hw party, you can also just describe
the group.) How did you work on this homework? Working in groups of 3-5 will earn credit
for your "Sundry" grade.

Please copy the following statement and sign next to it:

I certify that all solutions are entirely in my words and that I have not looked at another
student’s solutions. I have credited all external sources in this write up.

2. (32 points) Modular Arithmetic
Solve the following equations for x and y modulo the indicated modulus, or show that no
solution exists. Show your work.

(a) (8 points) 9x≡ 1 (mod 11).

(b) (8 points) 10x+23≡ 3 (mod 31).

(c) (8 points) 3x+15≡ 4 (mod 21).

(d) (8 points) The system of simultaneous equations 3x+ 2y ≡ 0 (mod 7) and 2x+ y ≡ 4
(mod 7).

3. (8 points) Don’t Try This at Home
A ticket in the lottery consists of six numbers chosen from 1,2, . . . ,48 (repetitions allowed).
After everyone has bought their tickets, the manager picks 5 winning numbers from this set
at random. Your ticket wins if it contains each of these winning numbers. Order is irrelevant.

Prove that if you buy all possible tickets for which the sum of the six entries on the ticket is
divisible by 47, then you are guaranteed to have a winner.

4. (50 points) Further extending the extended GCD algorithm
In class, you learned how to use Euclid’s algorithm to find the GCD of 2 numbers x and y.
You also saw an extended version of the algorithm that allowed you to find 2 other numbers
a and b such that ax+by = GCD(x,y).

In this problem, you’re going to analyze an algorithm that finds the GCD of more than 2
numbers. That is, you’re given n numbers [x1, x2, . . . , xn], and your job is to develop/ana-
lyze an algorithm that finds the greatest natural number (the GCD) that divides all the given
numbers.

CS 70, Fall 2016, HW 4 1



(a) (10 points) Suppose you’re given n non-negative numbers [x1, x2, . . . , xn], at least one
of which is strictly positive. Of these n numbers, let z be the smallest number that is
strictly positive. Before going ahead, convince yourself that such a z exists.
Now, suppose I take each number xi 6= z on the list above, and replace it with the remain-
der that I get when I divide xi by z. Let’s say this results in a new list [y1, y2, . . . , yn].
Show that:

GCD(x1, x2, . . . , xn) = GCD(y1, y2, . . . , yn).

(b) (10 points) Consider the algorithm GCDmany below that is intended to compute the
GCD of a list of numbers.

algorithm GCDmany (list [x1, x2, . . ., xn]):
nz = list of all non-zero elements of [x1, x2, . . . , xn]
if length(nz) == 1:

return nz[0] # the first and only element of nz
[idx, m] = min(nz) # position, value of smallest element

of nz
foreach k 6= idx such that 0≤ k < length(nz):

nz[k] = nz[k] mod m
return GCDmany(nz)

Using the result that you proved in Part 1, show that the GCDmany algorithm correctly
returns the GCD of any list of non-negative numbers, provided that at least one of the
numbers in the list is strictly positive.

(c) (10 points) Suppose I run the GCDmany algorithm on n positive numbers, each repre-
sented by m bits. Derive a bound (in terms of m and n) for the number of recursion calls
that the algorithm execution will result in.

(d) (10 points) Suppose I tell you the following:

• Listing all non-zero elements given n m-bit numbers can be done in at most mn
computer operations,

• Computing the minimum of n m-bit numbers can be done using at most 4mn oper-
ations,

• The remainder on dividing one m-bit number by another can be calculated within
3m2 operations,

• All other steps needed by the GCDmany algorithm take at most 10 computer oper-
ations, and

• Each computer operation takes 1ns on my computer.

Based on the above, derive an upper bound for how long it will take for my computer to
find the GCD of 100 positive 64-bit numbers using the GCDmany algorithm above.

(e) (10 points) Suppose I’m interested in computing not just the GCD G of the n positive
numbers x1 to xn, but also integer coefficients a1 to an such that:

CS 70, Fall 2016, HW 4 2



n

∑
i=1

aixi = G.

Describe how you will modify the GCDmany algorithm to also output the coefficients
above. Write down the steps in your modified algorithm in a format similar to the
GCDmany algorithm above.

5. (Optional) The last digit
Let a be a positive integer. Consider the following sequence of numbers x defined by:

x0 = a

xn = x2
n−1 + xn−1 +1 if n > 0

(a) Show that if the last digit of a is 3 or 7, then for every n, the last digit of xn is respectively
3 or 7.

(b) Show that there exist k > 0 such that the last digit of xn for n ≥ k is constant. Give the
smallest possible k, no matter what a is.

CS 70, Fall 2016, HW 4 3


