Outline for next 2 lectures.

1. Cryptography = relation to Bijections
2. Public Key Cryptography
3. RSA system

3.1 Efficiency: Repeated Squaring.

3.2 Correctness: Fermat’s Little Theorem.
3.3 Construction.
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Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!
= [T| =S
Same set.
Why does a have inverse? T is S and therefore contains 1 !

What does this mean? There is an x where ax = 1.
There is an inverse of a!
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Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!

Uses up one time pad..or less and less secure.
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Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K Message m
(m.K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.
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Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e' mod (p—1)(g—1). d is the private key!
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢, N).
Decoding: mod (y9,N).
Does D(E(m)) = m® = m mod N?

Yes!

Typically small, say e = 3.
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Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

7(-17)+60(2) = 1
Confirm: —119+120 =1
d=e"'=-17=43= (mod 60)
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RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

Obvious way: 43 multiplcations. Ouch.

In general, O(N) multiplications in the value of the exponent N!
That’s not great.
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4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)
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518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
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5 more multiplications.

51%2.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
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Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ... ,x?"%"

2. Multiply together x’ where the (log(i))th bit of y is 1.
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a’'=1 (mod p).
Proof: Consider S={a-1,...;a-(p—1)}.

All different modulo p since a has an inverse modulo p. Thatis: S
contains representative of each of 1,...,p—1 modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

dP (1 (p=1))=(1-(p—1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.



