Outline for next 2 lectures.

1. Cryptography = relation to Bijections
2. Public Key Cryptography
3. RSA system

3.1 Efficiency: Repeated Squaring.

3.2 Correctness: Fermat’s Little Theorem.
3.3 Construction.

Cryptography ...

@ Eve Bob

Cryptography ...

Secret s

Alice Bob
Eve

Cryptography ...

Secret s

Message m

Ali B
ice Eve ob

Cryptography ...

Secret s

Message m

Cryptography ...

Secret s

Message m

Cryptography ...

m= D(E(m,s),s) Secret s

Message m
‘a B
@ Eve ob

Cryptography ...

Message m

What is the relation between D and E (for the same secret s)?

Excursion: Bijections.

f: S— T is one-to-one mapping.

Excursion: Bijections.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x') for x,x’ € Sand x # x'.

Excursion: Bijections.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!

Excursion: Bijections.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if forevery ye T

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).
Bijection is one-to-one and onto function.

Two sets have the same size
if and only if there is a bijection between them!

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).
Bijection is one-to-one and onto function.

Two sets have the same size
if and only if there is a bijection between them!

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).
Bijection is one-to-one and onto function.

Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?
f(red) =1, f(yellow) =2, f(blue) = 2.

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?
f(red) =1, f(yellow) =2, f(blue) = 2.
two to onel!

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?
f(red) =1, f(yellow) =2, f(blue) = 2.
two to one! not one to one.

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?
f(red) =1, f(yellow) =2, f(blue) = 2.
two to one! not one to one.
{red, yellow} and {1,2,3}?

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?
f(red) =1, f(yellow) =2, f(blue) = 2.
two to one! not one to one.
{red, yellow} and {1,2,3}?
f(red) =1, f(yellow) = 2.

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?
f(red) =1, f(yellow) =2, f(blue) = 2.
two to one! not one to one.
{red, yellow} and {1,2,3}?
f(red) =1, f(yellow) = 2.
Misses 3.

Excursion: Bijections.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # x’. Not 2 to 1!
f(-) is onto

if for every y € T there is x € S where y = f(x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red, yellow, blue} and {1,2,3}?
f(red) =1, f(yellow) =2, f(blue) = 3.
{red, yellow, blue} and {1,2}?
f(red) =1, f(yellow) =2, f(blue) = 2.
two to one! not one to one.
{red, yellow} and {1,2,3}?
f(red) =1, f(yellow) = 2.
Misses 3. not onto.

Modular arithmetic examples.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto

if for every y € T there is x € S where y = f(x).

Modular arithmetic examples.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto

if for every y € T there is x € S where y = f(x).

Recall: f(red) =1, f(yellow) =2, f(blue) =3

Modular arithmetic examples.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto

if for every y € T there is x € S where y = f(x).

Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Modular arithmetic examples.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto

if for every y € T there is x € S where y = f(x).

Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Is f(x) =x+1 (mod m)

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Is f(x) = x+1 (mod m) one-to-one?

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto:

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.
Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.
Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?
If gcd(a,m) =1, ax # ax’ (mod m).

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.
Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?
If gcd(a,m) =1, ax # ax’ (mod m).

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.
Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?
If gcd(a,m) =1, ax # ax’ (mod m).

Injective? Surjective?

Modular arithmetic examples.

f:S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.
Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?
If gcd(a,m) =1, ax # ax’ (mod m).
Injective? Surjective?
We tend to use one-to-one and onto.

Modular arithmetic examples.

f: S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.
Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?
If gcd(a,m) =1, ax # ax’ (mod m).
Injective? Surjective?
We tend to use one-to-one and onto.
Bijection is one-to-one and onto function.

Modular arithmetic examples.

f:S— T is one-to-one mapping.
one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto
if for every y € T there is x € S where y = f(x).
Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.
Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?
If gcd(a,m) =1, ax # ax’ (mod m).
Injective? Surjective?
We tend to use one-to-one and onto.

Bijection is one-to-one and onto function.
Two sets have the same size

Modular arithmetic examples.

f: S— T is one-to-one mapping.

one-to-one: f(x) # f(x’) for x,x’ € Sand x # y.
f(-) is onto

if for every y € T there is x € S where y = f(x).

Recall: f(red) =1, f(yellow) =2, f(blue) =3
One-to-one if inverse: g(1) = red, g(2) = yellow, g(3) = blue.

Is f(x) = x+1 (mod m) one-to-one? g(x)=x—1 (mod m).
Onto: range is subset of domain.
Is f(x) = ax (mod m) one-to-one?
If gcd(a,m) =1, ax # ax’ (mod m).
Injective? Surjective?
We tend to use one-to-one and onto.
Bijection is one-to-one and onto function.

Two sets have the same size
if and only if there is a bijection between them!

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}
Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T.

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

TCS

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!
= |T| =S|

Inverses: continued.

Claim: a—' (mod m) exists when gcd(a,m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!

= [T| =S
Same set.

Inverses: continued.

Claim: a~' (mod m) exists when gcd(a, m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!

= [T| =S
Same set.

Why does a have inverse?

Inverses: continued.

Claim: a~' (mod m) exists when gcd(a, m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!

= [T| =S
Same set.

Why does a have inverse? T is S and therefore contains 1

Inverses: continued.

Claim: a~' (mod m) exists when gcd(a, m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!

= [T| =S
Same set.

Why does a have inverse? T is S and therefore contains 1 !

Inverses: continued.

Claim: a~' (mod m) exists when gcd(a, m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!

= [T| =S
Same set.

Why does a have inverse? T is S and therefore contains 1 !
What does this mean?

Inverses: continued.

Claim: a~' (mod m) exists when gcd(a, m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!

= [T| =S
Same set.

Why does a have inverse? T is S and therefore contains 1 !
What does this mean? There is an x where ax =1.

Inverses: continued.

Claim: a~' (mod m) exists when gcd(a, m) = 1.
Fact: ax # ay (mod m) for x #y € {0,...m—1}

Consider T = {0a (mod m),1a (mod m),...,...(m—1)a (mod m)}
Consider S={0,1,...,...(m—1)}
S=T. Why?

T C Ssince ax (mod m) € {0,....m—1}
One-to-one mapping from Sto T!
= [T| =S
Same set.
Why does a have inverse? T is S and therefore contains 1 !

What does this mean? There is an x where ax = 1.
There is an inverse of a!

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!
Example:

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!
Example:

One-time Pad: secret s is string of length |m|.

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad..

Back to Cryptography ...

m= D(E(m,s),s) Secret s

Message m
Bob

What is the relation between D and E (for the same secret s)?
D is the inverse function of E!

Example:

One-time Pad: secret s is string of length |m|.

E(m,s) — bitwise m& s.

D(x,s) — bitwise x & s.

Works because m@ s s=m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:
Shared secret!

Uses up one time pad..or less and less secure.

Public key cryptography.

@ Bob

Eve

Public key cryptography.

Public: K

@ Bob

Eve

Public key cryptography.

Private: k Public: K

@ Bob

Eve

Public key cryptography.

Private: k Public: K Message m

@ Bob

Eve

Public key cryptography.

Private: k Public: K Message m

E(m,K)

Eve

Public key cryptography.

Private: k Public: K Message m

(m,K)
@ Bob

Eve

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K

(m, K)

Eve

Message m

Bob

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K

(m, K)

Everyone knows key K!

Eve

Message m

Bob

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K

(m, K)

Everyone knows key K!
Bob (and Eve

Eve

Message m

Bob

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K

(m, K)

Everyone knows key K!
Bob (and Eve and me

Eve

Message m

Bob

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K

(m, K)

Everyone knows key K!
Bob (and Eve and me and you

Eve

Message m

Bob

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.

Public key cryptography.

m= D(E(m,K), k)

Private: k Public: K Message m
(m.K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is public key crypto unbreakable?

We don’t really know.

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p—1)(g—1)."

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e' mod (p—1)(g—1). d is the private key!

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e' mod (p—1)(g—1). d is the private key!
Announce N(=p-q) and e: K = (N, e) is my public key!

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e' mod (p—1)(g—1). d is the private key!
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢, N).

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e' mod (p—1)(g—1). d is the private key!
Announce N(=p-q) and e: K = (N, e) is my public key!
Encoding: mod (x¢, N).

Decoding: mod (y9,N).

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e' mod (p—1)(g—1). d is the private key!
Announce N(=p-q) and e: K = (N, e) is my public key!
Encoding: mod (x¢,N).

Decoding: mod (y9, N).

Does D(E(m)) = m®® = m mod N?

Typically small, say e = 3.

Is public key crypto unbreakable?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e' mod (p—1)(g—1). d is the private key!
Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢, N).
Decoding: mod (y9,N).
Does D(E(m)) = m® = m mod N?

Yes!

Typically small, say e = 3.

Example: p=7,qg=11.

Example: p=7,qg=11.
N=77.

Example: p=7,qg=11.
N=77.
(p—1)(g—1)=60

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d?

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

7(—17)+60(2) = 1

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

7(—17)+60(2) = 1

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

7(-17)+60(2) = 1
Confirm:

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

7(-17)+60(2) = 1
Confirm: —119+120 =1

Example: p=7,qg=11.

N=77.

(p—1)(g—1)=60

Choose e =7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

7(-17)+60(2) = 1
Confirm: —119+120 =1
d=e"'=-17=43= (mod 60)

Important Considerations

Q1: Why does RSA work correctly?

Important Considerations

Q1: Why does RSA work correctly? Fermat'’s Little Theorem!

Important Considerations

Q1: Why does RSA work correctly? Fermat'’s Little Theorem!
Q2: Can RSA be implemented efficiently?

Important Considerations

Q1: Why does RSA work correctly? Fermat'’s Little Theorem!
Q2: Can RSA be implemented efficiently? Yes, repeated squaring!

RSA on an Example.

RSA on an Example.

Public Key: (77,7)

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2
E(2)

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2
E(2)=2°¢

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2
E(2)=2¢=27

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2
E(2)=2¢ =27 =128 (mod 77)

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2
E(2)=2°=27=128 (mod 77) =51 (mod 77)

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2

E(2)=2¢=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

RSA on an Example.

Public Key: (77,7)

Message Choices: {0,...,76}.

Message: 2

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

Obvious way: 43 multiplcations. Ouch.

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2

E(2)=2¢=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)
uh oh!

Obvious way: 43 multiplcations. Ouch.
In general, O(N) multiplications in the value of the exponent N!

RSA on an Example.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2

E(2)=2°=27=128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)

uh oh!

Obvious way: 43 multiplcations. Ouch.

In general, O(N) multiplications in the value of the exponent N!
That’s not great.

Repeated Squaring to the rescue.

Repeated Squaring to the rescue.

5143

Repeated Squaring to the rescue.

5143 — 5132+8+2+1

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
4 multiplications sort of...

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
4 multiplications sort of...
Need to compute 5132...511.?

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58 %+ 58 = 3364 = 53 (mod 77)

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).
4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)
5132 = (5116) x(5176) = 37437 = 1369 = 60 (mod 77)

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)
5132 = (5116) x(5176) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)
5132 = (5116) x(5176) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.
51%2.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)
5132 = (5116) x(5176) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.
51%2.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)
5132 = (5116) x(5176) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

51%2.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications

Repeated Squaring to the rescue.

5143 = 5132+8+2+1 _ 5132.518.512.511 (mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

51" =51 (mod 77)

512 = (51)*(51) = 2601 =60 (mod 77)

514 = (512)%(512) = 6060 = 3600 = 58 (mod 77)
518 = (514)x(51%) = 58+ 58 = 3364 = 53 (mod 77)
5116 = (518) % (518) = 53+ 53 = 2809 = 37 (mod 77)
5132 = (5116) x(5176) = 37437 = 1369 = 60 (mod 77)

5 more multiplications.

51%2.518.512.511 = (60) % (53) % (60) * (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Repeated Squaring: x

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x?,

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x,x2, x*,

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

1. x¥: Compute x',x2, x*, ...,

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ... ,x?"%"

Repeated Squaring: x

Repeated squaring O(log y) multiplications versus y!l!

I
1. x¥: Compute x',x2, x4, ... ,x?"%"

2. Multiply together x’ where the (log(i))th bit of y is 1.

Always decode correctly?

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

Always decode correctly?

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a’'=1 (mod p).
Proof: Consider S={a-1,...;a-(p—1)}.

Always decode correctly?

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a’'=1 (mod p).
Proof: Consider S={a-1,...;a-(p—1)}.

All different modulo p since a has an inverse modulo p.

Always decode correctly?

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

Proof: Consider S={a-1,...;a-(p—1)}.

All different modulo p since a has an inverse modulo p. Thatis: S

contains representative of each of 1,...,p—1 modulo p.

Always decode correctly?

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a’'=1 (mod p).
Proof: Consider S={a-1,...;a-(p—1)}.

All different modulo p since a has an inverse modulo p. Thatis: S
contains representative of each of 1,...,p—1 modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,

Since multiplication is commutative.

aP V... (p=1)=(1---(p—1)) modp.

Always decode correctly?

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a’'=1 (mod p).
Proof: Consider S={a-1,...;a-(p—1)}.

All different modulo p since a has an inverse modulo p. Thatis: S
contains representative of each of 1,...,p—1 modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

dP (1 (p=1))=(1-(p—1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.

Always decode correctly?

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a’'=1 (mod p).
Proof: Consider S={a-1,...;a-(p—1)}.

All different modulo p since a has an inverse modulo p. Thatis: S
contains representative of each of 1,...,p—1 modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

dP (1 (p=1))=(1-(p—1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.

