
Outline for next 2 lectures.

1. Cryptography⇒ relation to Bijections

2. Public Key Cryptography

3. RSA system

3.1 Efficiency: Repeated Squaring.
3.2 Correctness: Fermat’s Little Theorem.
3.3 Construction.
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What is the relation between D and E (for the same secret s)?
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Excursion: Bijections.

f : S→ T is one-to-one mapping.

one-to-one: f (x) 6= f (x ′) for x ,x ′ ∈ S and x 6= x ′. Not 2 to 1!
f (·) is onto

if for every y ∈ T there is x ∈ S where y = f (x).

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!

Same size?
{red ,yellow ,blue} and {1,2,3}?

f (red) = 1, f (yellow) = 2, f (blue) = 3.
{red ,yellow ,blue} and {1,2}?

f (red) = 1, f (yellow) = 2, f (blue) = 2.
two to one! not one to one.
{red ,yellow} and {1,2,3}?

f (red) = 1, f (yellow) = 2.
Misses 3. not onto.
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Modular arithmetic examples.

f : S→ T is one-to-one mapping.
one-to-one: f (x) 6= f (x ′) for x ,x ′ ∈ S and x 6= y .

f (·) is onto
if for every y ∈ T there is x ∈ S where y = f (x).

Recall: f (red) = 1, f (yellow) = 2 , f (blue) = 3
One-to-one if inverse: g(1) = red , g(2) = yellow , g(3) = blue.

Is f (x) = x +1 (mod m) one-to-one? g(x) = x−1 (mod m).
Onto: range is subset of domain.
Is f (x) = ax (mod m) one-to-one?

If gcd(a,m) = 1, ax 6= ax ′ (mod m).

Injective? Surjective?
We tend to use one-to-one and onto.

Bijection is one-to-one and onto function.
Two sets have the same size
if and only if there is a bijection between them!
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Inverses: continued.

Claim: a−1 (mod m) exists when gcd(a,m) = 1.

Fact: ax 6= ay (mod m) for x 6= y ∈ {0, . . .m−1}
Consider T = {0a (mod m),1a (mod m), ..., . . .(m−1)a (mod m)}
Consider S = {0,1, ..., . . .(m−1)}
S = T . Why?

T ⊆ S since ax (mod m) ∈ {0, . . . ,m−1}
One-to-one mapping from S to T !
=⇒ |T | ≥ |S|

Same set.

Why does a have inverse? T is S and therefore contains 1 !

What does this mean? There is an x where ax = 1.
There is an inverse of a!
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Back to Cryptography ...

BobAlice
Eve

Secret s

Message m
E(m,s)E(m,s)

m = D(E(m,s),s)

What is the relation between D and E (for the same secret s)?

D is the inverse function of E !

Example:
One-time Pad: secret s is string of length |m|.
E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x⊕s.
Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.
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m = D(E(m,K ),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .
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Is public key crypto unbreakable?

We don’t really know.

...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1). d is the private key!
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.
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Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60

Choose e = 7, since gcd(7,60) = 1.
How to compute d? egcd(7,60).

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)
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Important Considerations

Q1: Why does RSA work correctly?

Fermat’s Little Theorem!

Q2: Can RSA be implemented efficiently? Yes, repeated squaring!
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RSA on an Example.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.
Message: 2

E(2) = 2e = 27 ≡ 128 (mod 77) = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplcations. Ouch.

In general, O(N) multiplications in the value of the exponent N!
That’s not great.
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Repeated Squaring to the rescue.

5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511 (mod 77).
4 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
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Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2blogyc
.

2. Multiply together x i where the (log(i))th bit of y is 1.
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Always decode correctly?

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).
Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p. That is: S
contains representative of each of 1, . . . ,p−1 modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.
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