Lecture 14. Quitline.

1. Finish Polynomials and Secrets.
2. Finite Fields: Abstract Algebra
3. Erasure Coding
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Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: There is exactly 1 polynomial of degree
< d with arithmetic modulo prime p that contains d+ 1 pts.

Note: The points have to have different x values!

Shamir’s k out of n Scheme:
Secretse€{0,...,p—1}

1. Choose gy = s, and random ay,...,8k_1.
2. Let P(x) = a_1x" 1+ ax_oxk24... a9 with gy = s.
3. Share i for i > 1 is point (i, P(i) mod p).

Robustness: Any k shares gives secret.
Knowing k pts, find unique P(x), evaluate P(0).
Secrecy: Any k — 1 shares give nothing.
Knowing < k — 1 pts, any P(0) is possible.
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There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree < d polynomial with
arithmetic modulo prime p contains d+ 1 pts.

Proof of at least one polynomial:
Given points: (x1,1): (X2, ¥2) - (Xg+1, Yd+1)-

Ai(x) — M
[Tji(xi — x;)

Numerator is 0 at x; # x;.

Denominator makes it 1 at x;.

And..

P(X) = y181(X) + y2L2(X) + -+ Va1 Dg11(X).
hits points (x1,¥1); (X2,¥2) - (Xd+1,Yd+1)- Degree d polynomial!
Construction proves the existence of a polynomial!
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Reiterating Examples.

ITji(x—)

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?
Work modulo 5.
A4(x) contains (1,1) and (3,0).
M) =53 =25
=2(x—3)=2x—-6=2x+4 (mod 5).
For a quadratic, a,x® + a1 x + ag hits (1,3);(2,4);(3,0).
Work modulo 5.
Find A¢(x) polynomial contains (1,1);(2,0);(3,0).
A1) = (g = S =8(x—2)(x-3)
=3x2+1 (mod 5)
Put the delta functions together.




Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1) =



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)

Subtract first from second..



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)

Subtract first from second..

m+b = 3 (mod 5)
m 1 (mod 5)



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)

Subtract first from second..

m+b = 3 (mod 5)
m 1 (mod 5)

Backsolve: b=2 (mod 5).



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)

Subtract first from second..

m+b = 3 (mod 5)
m 1 (mod 5)

Backsolve: b=2 (mod 5). Secret is 2.



Simultaneous Equations Method.

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)

Subtract first from second..

m+b = 3 (mod 5)
m 1 (mod 5)

Backsolve: b=2 (mod 5). Secret is 2.

And the line is...
X+2 modb>5.
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Quadratic
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Quadratic
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For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
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Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a>+2a;+ay = 4 (mod5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ay=(2—-4(ay))27"=(-2)(27")=(38)(8) =9 =4 (mod 5)
a=2—-1-4=2 (mod 5).



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a>+2ay+ag 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ap=(2-4(a1))27' =(-2)(27") = (3)(3) =9=4 (mod 5)

a=2—-1-4=2 (mod 5).

So polynomial is 2x2 + 1x+4 (mod 5)
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Solve...

ax 1 xk '+ +a = y (mod p)
ak 1 x5k '+..+ay = yo (modp)
ak 1xf ' +-+a = yk (mod p)

Will this always work?
As long as solution exists and it is unique! And...
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Summary.

Modular Arithmetic Fact: Exactly 1 polynomial of degree < d with
arithmetic modulo prime p contains d + 1 pts.

Existence:
Lagrange Interpolation.

Uniqueness: (proved last time)
At most d roots for degree d polynomial.
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Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime p is a finite field denoted by F, or GF(p).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.
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Efficiency.

Need p > nto hand out n shares: P(1)...P(n).
For b-bit secret, must choose a prime p > 2°.
Theorem: There is always a prime between n and 2n.

Working over numbers within 1 bit of secret size.
Minimal!

With k shares, reconstruct polynomial, P(x).

With k — 1 shares, any of p values possible for P(0)!
(Within 1 bit of) any b-bit string possible!

(Within 1 bit of) b-bits are missing: one P(i).

Within 1 of optimal number of bits.
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Runtime.

Runtime: polynomial in k, n, and logp.

1. Evaluate degree n— 1 polynomial n+ k times using log p-bit
numbers. O(knlog?p).

2. Reconstruct secret by solving system of n equations using
log p-bit arithmetic. O(n®log? p).

3. Matrix has special form so O(nlog nlog® p) reconstruction.

Faster versions in practice are almost as efficient.
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A bit of counting.

What is the number of degree d polynomials over GF(m)?

» mat!: d+1 coefficients from {0,...,m—1}.

» m?*t1: d+1 points with y-values from {0,...,m—1}

Infinite number for reals, rationals, complex numbers!
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Erasure Codes.

Satellite 3 packet message. So send 6!

Lose 3 out 6 packets.

K== === ==

GPS device Gets packets 1,1,and 3.
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Solution Idea.

n packet message, channel that loses k packets.
Must send n+ k packets!

Any should allow reconstruction of n packet message.
Any allow reconstruction of degree n— 1 polynomial
which has n coefficients!
Alright!!l

Use polynomials.
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Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.

Question: Can you send n+ k packets and recover message?
A degree n—1 polynomial determined by any n points!

Erasure Coding Scheme: message = mgy,my,mo,...,my_1. Each m;
is a packet.

1. Choose prime p > 2° for packet size b (size = number of bits).
2. P(x)=mp_1x" 1 4+...my (mod p).
3. Send P(1),...,P(n+k).

Any n of the n+ k packets gives polynomial ...and message!
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Erasure Codes.

Satellite
1 2 J : n+k
I ” I ...... I I
1 2 i n—+k

GPS device

n packet message. So send n+ k!

Lose k packets.

Any n packets is enough!
n packet message.

Optimal.
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Comparison with Secret Sharing.

Comparing information content:
Secret Sharing: each share is size of whole secret.
Coding: Each packet has size 1/n of the whole message.
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Erasure Code: Example.

Send message of 1,4, and 4. up to 3 erasures. n=3,k=3
Make polynomial with P(1) =1, P(2) =4, P(3) = 4.
How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

P(x) = x? (mod 5)
P(1)=1,P(2)=4,P(3)=9=4 (mod 5)

Send (0, P(0))...(5,P(5)).
6 points. Better work modulo 7 at least!
Why? (0,P(0)) = (5,P(5)) (mod 5)
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Make polynomial with P(1) =1, P(2) =4, P(3) =4.
Modulo 7 to accommodate at least 6 packets.
Linear equations:
P(1)=a+ai+a = 1 (mod?7)
P(2)=4a>+2a1+a = 4 (mod7)
P(3)=2a>+3a;+ay = 4 (mod7)

6a; +3apy =2 (mod 7), 5a;+4ay=0 (mod 7)
ai =2ay. ag=2 (mod 7) a;=4 (mod 7) a =2 (mod 7)
P(x)=2x2+4x+2

P(1)=1, P(2)=4,and P(3) =4

Send
Packets: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Notice that packets contain “x-values”.
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» ..give Secret Sharing.

» ..give Erasure Codes.

Next time: correct broader class of errors!



