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Linear Regression: Preamble

The best guess about Y, if we know only the distribution of Y, is E[Y].
More precisely, the value of a that minimizes E[(Y — a)?] is a= E[Y].
Proof:
Let ¥ := Y —E[Y]. Then, E[Y] = 0. So, E[Yc] = 0,Vc. Now,
El(Y-a)’] = ElY-E[V]+E[Y]-a)’]

= E[(Y+c)’)|withc=E[Y]-a

= E[Y?+2Vc+c? = E[Y?|+2E[Yc]+c?

= E[Y?]|+0+c%> E[Y?.
Hence, E[(Y — a)?] > E[(Y — E[Y])?],Va. O



Linear Regression: Preamble

Thus, if we want to guess the value of Y, we choose E[Y].
Now assume we make some observation X related to Y.
How do we use that observation to improve our guess about Y?

The idea is to use a function g(X) of the observation to
estimate Y.

The simplest function g(X) is a constant that does not depend
of X.

The next simplest function is linear: g(X) = a+ bX.
What is the best linear function? That is our next topic.
A bit later, we will consider a general function g(X).



Linear Regression: Motivation

Example 1: 100 people.
Let (Xp, Yn) = (height, weight) of person n, for n=1,...,100:
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The blue lineis Y =—-114.3+106.5X. (X in meters, Y in kg.)
Best linear fit: Linear Regression.



Motivation

Example 2: 15 people.

We look at two attributes: (Xj, Yy) of person n, forn=1,...
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The line Y = a+ bX is the linear regression.



Covariance

Definition The covariance of X and Y is

cov(X,Y) := E[(X — E[X])(Y — E[Y])].

Fact
cov(X, Y) = E[XY] - E[X]E[Y].

Proof:

E[(X — E[X])(Y — E[Y])] = E[XY — E[X]Y — XE[Y] + E[X]E[Y]]
= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]
= E[XY] - E[X]E[Y].

O



Examples of Covariance

Four equally likely pairs of values
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Note that E[X] =0 and E[Y] =0 in these examples. Then
cov(X,Y) = E[XY].

When cov(X, Y) > 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X,Y) < 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X,Y) =0, we say that X and Y are uncorrelated.



Examples of Covariance
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E[X]=1x0.1542x04+3x045=1.9
E[X?]=12x0.15+2%x0.4+3*x0.45=538
E[Y]=1x0242x06+3x02=2
E[XY]=1x0.054+1%x2x0.1+---+3x3x0.2=4.85
cov(X,Y) = E[XY] - E[X]E[Y]=1.05
var[X] = E[X?] - E[X]? =2.19.



Properties of Covariance
cov(X,Y) = E[(X — E[X])(Y — E[Y])] = E[XY] - E[X]E[Y].

Fact
a) var[X] = cov(X,X)

( ) X, Y independent = cov(X,Y) =0

(c) cov(a+ X,b+Y)=rcov(X,Y)

(d) cov(aX+bY,cU+dV) = ac.cov(X,U)+ad.cov(X, V)
+bc.cov(Y,U)+ bd.cov(Y,V).

Proof:

(a)-(b)-(c) are obvious.

(d) In view of (c), one can subtract the means and assume that the

RVs are zero-mean. Then,

cov(aX +bY,cU+dV) = E[(aX+bY)(cU+dV)]
= ac.E[XU]+ad.E[XV]+ bc.E[YU]+ bd.E[YV]
= ac.cov(X,U)+ad.cov(X, V)+bc.cov(Y,U)+ bd.cov(Y,V).

L]



Linear Regression: Non-Bayesian
Definition
Given the samples {(Xp, Yn),n=1,...,N}, the Linear
Regression of Y over X is

A

Y=a+bX

where (a, b) minimize

N
Y (Yo—a—bX,)%.

n=1

Thus, V,, =a-+bX,is our guess about Y;, given X,,. The
squared error is (Y, — Y;)2. The LR minimizes the sum of the
squared errors.

Why the squares and not the absolute values? Main
justification: much easier!

Note: This is a non-Bayesian formulation: there is no prior.



Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution
Pr[X = x,Y = y], the Linear Least Squares Estimate of Y given
Xis .
Y =a+bX=:L[Y|X]
where (a, b) minimize
g(a,b) := E[(Y —a—bX)?].

Thus, Y = a+ bXis our guess about Y given X. The squared
error is (Y — Y)2. The LLSE minimizes the expected value of
the squared error.

Why the squares and not the absolute values? Main
justification: much easier!

Note: This is a Bayesian formulation: there is a prior.



LR: Non-Bayesian or Uniform?

Observe that

L ZN‘,(Y,,—,:-f—bx,,)2 = E[(Y —a—bX)?]
n=1

Z|

where one assumes that
(X,Y)=(Xn, Yn), w.p. 1Nfor n=1,....N.

That is, the non-Bayesian LR is equivalent to the Bayesian
LLSE that assumes that (X, Y) is uniform on the set of
observed samples.

Thus, we can study the two cases LR and LLSE in one shot.
However, the interpretations are different!



LLSE

Theorem
Consider two RVs X, Y with a given distribution
PriX=x,Y =y]. Then,

L[Y|X] = ¥ = E[Y] + M
Proof 1: var(X)

Y-V = (Y- E[Y])- S5 (X~ E[X]). Hence, E[Y - V]~ 0.

(X —E[X]).

Also, E[(Y — ¥)X] = 0, after a bit of algebra. (See next slide.)

Hence, by combining the two brown equalities,
E[(Y - Y)(c+dX)]7O Then, E[(Y — Y)(Y a—bX)]=0,va,b.

Indeed: ¥ = o+ B X for some a, 8, so that ¥ —a— bX = c+ dX for
some ¢, d. Now,

E[(Y—a—bX)?|=E[(Y-V+V—a—bX)?
=E[(Y-Y)?]|+E[(Y—a—bX)?|+0>E[(Y-Y)?].

This shows that E[(Y — ¥)2] < E[(Y —a— bX)?], for all (a,b).
Thus Y is the LLSE.



A Bit of Algebra

Y=V = (Y- E[Y]) - S5 (X - E[X)).

Hence, E[Y — ¥] = 0. We want to show that E[(Y — ¥)X] = 0.

Note that R ~
E[(Y = Y)X] = E[(Y = Y)(X — E[X])].

because E[(Y — Y)E[X]] = 0.
Now,
E[(Y - ¥)(X - E[X])]

— E[(Y  EIY)(X ~ E[X)] - S X EXD(X - EWX)

cov(X, Y) var[X]=0. O

var[X]

= cov(X,Y) -

() Recall that cov(X,Y) = E[(X — E[X])(Y — E[Y])] and
var[X] = E[(X — E[X])2).



Estimation Error

We saw that the LLSE of Y given X is

cov(X Y)
var(X)

How good is this estimator? That is, what is the mean squared
estimation error?

We find

E[|Y — L[Y|X][’] = E[(Y — E[Y] - (cov(X. Y)/var(X))(X — E[X]))’]
= E[(Y — E[Y])?] - 2(cov(X, Y)/var(X))E[(Y — E[Y])(X — E[X])]
+(cov(X, Y)/var(X))?E[(X — E[X])?]
cov(X,Y)?
var(X)

L[Y|X]= VY =E[Y]+ (X — E[X]).

=var(Y)-

Without observations, the estimate is E[Y] = 0. The error is var(Y).
Observing X reduces the error.



Estimation Error: A Picture

We saw that
LYIX] = ¥ = E[V] + W(x— E[X])
and
E[lY — L[Y|X]"] = var(Y) - W

Here is a picture when E[X] =0, E[Y] =0:

cov(X,Y)?

var(X)

. H') var(Y)

|- ]]? = var(Y)

2 cov(X,Y)?
var(X)




Linear Regression Examples

Example 1:
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Linear Regression




Linear Regression Examples

Example 2:

We find:

E[X]=0;E[Y]=0;E[X?] =1/2,E[XY]=1/2;

var[X] = E[X?] - E[X]? =1/2;cov(X,Y) = E[XY] - E[X]E[Y]=1/2;

cov(X,Y)
var[X]

LR: ¥ = E[Y]+ (X —E[X]) = X.



Linear Regression Examples

Example 3:

L

We find:

E[X] =0;E[Y] =0; E[X?] =1/2, E[XY] = —1/2;
var[X] = E[X?]— E[X]? = 1/2;cov(X, Y) = E[XY] - E[X]E[Y] = —1/2;
cov(X,Y)

LR: ¥ = E[Y] + variX]

(X-E[X]))=-X.



Linear Regression Examples

Example 4:
v
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We find:

E[X]=3;E[Y] =25 E[X?] = (3/15)(1 +22 + 32 + 4% + 5%) = 11;
E[XY]=(1/15)(1 x1+1x2+---+5x4) =8.4;
var[X]=11-9=2;cov(X,Y)=84-3x25=0.9;

LR: Y =25+ 02;9()(—3) =1.15+0.45X.



LR: Another Figure

R ‘ _ eov(X,Y
thpE — var[X]

Note that
» the LR line goes through (E[X], E[Y])
> its slope is 24XV

var(X) -



Summary

| Linear Regression |

1. Linear Regression: L[Y|X] = E[Y]+C°V (X - E[X])

var(X)

2. Non-Bayesian: minimize Z,,(Yn—a—bXn)
3. Bayesian: minimize E[(Y —a— bX)?]



