CS70: Jean Walrand: Lecture 31.

Nonlinear Regression

. Review: joint distribution, LLSE

. Quadratic Regression

. Definition of Conditional expectation

. Properties of CE

. Applications: Diluting, Mixing, Rumors
. CE=MMSE
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Review

Definitions Let X and Y be RVs on Q.

» Joint Distribution: Pr{X =x,Y =y]
> Marginal Distribution: Pr[X =x] =Y, PriX=x,Y = y]

» Conditional Distribution: PriY = y|X = x] = %

v

We saw that

cov(X,Y)

LYIX] = EIYI+ = 2o

(X—E[X]).

Recall the non-Bayesian and Bayesian viewpoints.

LLSE: L[Y|X] = a+ bX where a,b minimize E[(Y — a— bX)?].

Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).

Bettey estimate

Our goal: explore estimates ¥ = g(X) for nonlinear functions g(-).

Quadratic Regression

Let X, Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable
Q[Y|X] = a+bX +cX?

where a, b, c are chosen to minimize E[(Y —a— bX — cX?)?].
Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E[Y-a-bX-cX?}

0 E[(Y —a—bX —cX?)X]

0 = E[(Y-a-bX—-cX?)X?

We solve these three equations in the three unknowns (a, b, ¢).
Note: These equations imply that E[(Y — Q[Y|X])h(X)] = 0 for any
h(X) = d+eX + fX?. That is, the estimation error is orthogonal to all
the quadratic functions of X. Hence, Q[Y|X] is the projection of Y
onto the space of quadratic functions of X.

Conditional Expectation

Definition Let X and Y be RVs on Q. The conditional
expectation of Y given X is defined as

E[Y|X]=g(X)
where
g(x) =E[Y|X=x]:=Y yPrlY =y|X =x].

y

Fact
EYIX=x]=Y Y(o)Prlo|X =X].

Proof: E[Y|X = x] = E[Y|A] with A= {@: X(0) = x}.

Deja vu, all over again?

Have we seen this before? Yes.
Is anything new? Yes.

The idea of defining g(x) = E[Y|X = x] and then
E[YIX] = g(X).

Big deal? Quite! Simple but most convenient.
Recall that L[Y|X] = a+ bX is a function of X.
This is similar: E[Y|X] = g(X) for some function g().

In general, g(X) is not linear, i.e., not a+ bX. It could be that
g(X) = a+bX+cX2. Orthat g(X) = 2sin(4X) +exp{—3X}. Or
something else.




Properties of CE
E[YIX=x]=Y yPrlY =y|X =X
y

Theorem
(@) X, Y independent = E[Y|X] = E[Y];
(b) ElaY + bZ|X] = aE[Y|X]+ bE[Z|X];
(c) E[YA(X)|X] = h(X)E[Y|X],¥h();
(d) E[A(X)ELY|X]] = E[A(X)Y].VA();
(e) EIE[Y|X]] = E[V].
Proof:
(a),(b) Obvious
(©) E[Yh(X)|X =x] =Y Y(0)h(X(0)Prlo|X = X]

=Y Y(o)h(x)Pr{o|X = x] = h(x)E[Y|X = ]

Properties of CE

E[Y|IX=x]= ZyPr[Y:y\X: ]
y

Theorem
a) X, Y independent = E[Y|X] = E[Y];
b) ElaY + bZ|X] = aE[Y|X]+ bE[Z|X];

NEACH

E[Yh(X)|X] = h(X)E[Y|X],Vh();
E[h(X)E[Y|X]] = E[n(X) Y], Vh(-);

(
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(e) E[E[Y|X]] = E[Y].

c
d
e
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Proof: (continued)
(d) E[M(X)ELYIX]] =Y A(x)E[Y|X = X]PrX = x]

=Y h(x)Y yPr[Y = y|X = x]Pr[X = x]
X y

=Y h(x) Y yPriX=x,y =y]
X v

=Y h(x)yPriX = x.y = y] = E[N(X)Y].
Xy

Properties of CE

E[Y|X=x]=Y yPrlY =y|X =X]
y

Theorem
(a) X, Y independent = E[Y|X] = E[Y];
(b) E[aY + bZ|X] = aE[Y|X]+ bE[Z|X];
(c) E[Yh(X)|X] = h(X)E[Y|X],¥h(-);

(d) E[A(X)E[YIX]] = E[A(X) Y], Vh(-);
(e) E[E[YIX]] = E[Y].

Proof: (continued)
(e) Let h(X)=1in(d).

Properties of CE

Theorem

(@) X, Y independent = E[Y|X] = E[Y];
(b) ElaY +bZ|X] = aE[Y|X]+ bE[Z|X];
(c) E[Yh(X)|X] = h(X)E[Y|X],¥h(-);

(d) E[A(X)E[Y|X]] = E[h(X) Y], Vh(-);
(e) E[E[Y|X]] = E[Y].

Note that (d) says that
E[(Y — E[Y|X])h(X)] = 0.

We say that the estimation error Y — E[Y|X] is orthogonal to
every function h(X) of X.

We call this the projection property. More about this later.

Application: Calculating E[Y|X]

Let X,Y,Z be i.i.d. with mean 0 and variance 1. We want to
calculate

E[2+5X+7XY +11X2+13x322|X].

We find

E[2+5X+7XY +11X2+13X322|X]
=24+ 5X+7XE[Y|X]+11X2 +13X3E[Z22| X]
=24+ 5X+7XE[Y]+11X? +13X3E[Z?]
=245X+11X2+13X3(var|Z] + E[Z]?)
=24+5X+11X24+13X5.

Application: Diluting
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red halls

At each step, pick a ball from a well-mixed urn. Replace it with a blue
ball. Let X, be the number of red balls in the urn at step n. What is
E[Xn]?
Given X, = m, Xp.1 = m—1w.p. m/N (if you pick a red ball) and
Xn+1 = m otherwise. Hence,

E[Xpi1|Xn=ml=m—(m/N)=m(N—1)/N = X,p,
with p := (N—1)/N. Consequently,

E[Xn11] = E[E[Xn11|Xn]] = pE[Xn],n > 1.

N—-1

= EDX] = p" " EDG] = N(~

) tn>1.




Diluting

Here is a plot:
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Diluting

By analyzing E[X,.1]|Xs], we found that
E[Xp] = N(M)" 1 n>1.

Here is another argument for that result.

Consider one particular red ball, say ball k. At each step, it
remains red w.p. (N —1)/N, when another ball is picked. Thus,
the probability that it is still red at step nis [([N—1)/N]"". Let

Yn(k) = 1{ball k is red at step n}.
Then, X, = Yp(1)+---+ Ya(N). Hence,

E[Xn] = E[Yn(1)+"'+ Yn(N)] = NE[Yn(1)]
NPr[Yq(1) =1] = N[(N—1)/N]" 1.

Application: Mixing

red balls

’ ( ( ASS
B

At each step, pick a ball from each well-mixed urn. We transfer them
to the other urn. Let Xj, be the number of red balls in the bottom urn
at step n. What is E[X;]?

Given X, =m, X, 1 =m+1wp. pand X,.1 =m—1wp. g

where p = (1—m/N)? (B goes up, R down) and q = (m/N)? (R goes
up, B down).

Thus,

E[Xni1|Xn] = Xn+p—q=Xn+1-2Xpy/N=1+pXs, p:=(1-2/N).

Mixing

We saw that E[X11|Xp] =1+ pXa, p :=(1—2/N). Hence,

E[Xn1] =1+ pE[X;]
E[Xo] =1+ pN;E[Xs] = 1+p(1+pN) =1+p+p>N
E[Xs]=1+p(1+p+p?N)=1+p+p2+p°N
EXp=1+p+-+p™2+p " 'N.

Hence, ,

1—pn
E[Xo] = ”p

] +p" 'N,n>1.

Application: Mixing
Here is the plot.
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Application: Going Viral
Consider a social network (e.g., Twitter).
You start a rumor (e.g., Walrand is really weird).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.
Does the rumor spread? Does it die out (mercifully)?

X, =1

[0 0 p o] [op aofx=s
/ VAN

(c @0 o0Jooec|leoee

Xe=5

In this example, d = 4.




Application: Going Viral

[0oeo][op eo]x=s
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Fact: Let X =Y,_; Xp. Then, E[X] < iff pd < 1.

Proof:
Given X, = k, X1 = B(kd,p). Hence, E[X.1|Xh = k] = kpd.

Thus, E[Xn.1|Xa] = pdX,. Consequently, E[Xx] = (pd)" ', n>1.

If pd <1, then E[X; + -+ Xn] < (1 —pd) "' = E[X] < (1 —pd)~".

If pd > 1, then for all C one can find n s.t.
E[X]> E[Xi+---+Xq] > C.

In fact, one can show that pd > 1 = Pr[X =] > 0.

Application: Going Viral

‘o e O o”o o e OHQ o e .‘/\,:7

An easy extension: Assume that everyone has an independent
number D; of friends with E[D;] = d. Then, the same fact holds.

To see this, note that given X, = k, and given the numbers of friends
Dy =d4y,...,Dx = di of these X, people, one has
Xni1 = B(dy +---+dk,p). Hence,

ElXp411Xn = K, Dy = ..., Dy = di] = p(0h +- -+ ).
Thus, E[Xp1|Xn =k, Ds,...,D] = p(Dy + -+ Dy).
Consequently, E[X,1|X, = k] = E[p(D; +-- -+ Dg)] = pdk.
Finally, E[Xp.1|Xn] = pdXn, and E[Xq.1] = pdE[Xp).

We conclude as before.

Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.
Theorem Wald’s Identity
Assume that Xy, Xz,... and Z are independent, where

Z takes values in {0,1,2,...}

and E[Xp]=p foralln>1.

Then,
E[X1+--+ Xg] = wE[Z].

Proof:

E[Xi +-++Xz|Z = K] = uk.

Thus, E[X{+ -+ Xz|Z] = uZ.

Hence, E[Xi +---+ Xz] = E[uZ] = nE[Z].

CE = MMSE

Theorem
E[Y|X] is the ‘best’ guess about Y based on X.

Specifically, it is the function g(X) of X that

minimizes E[(Y — g(X))?].

E[Y|X]
o

Linear Regression

= » X

CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes
E[(Y —g(X))?]-

Proof:

Let h(X) be any function of X. Then

EI(Y —h(X))?] EI(Y —g(X)+g(X) ~ h(X))?]
EI(Y —9(X))’]+ E[(9(X) — h(X))?]

+2E[(Y = g(X))(9(X) — h(X))].

But,
E[(Y —g(X))(9(X) — h(X))] = 0 by the projection property.
Thus, E[(Y — h(X))?] = E[(Y - g(X))?]. O

E[Y|X] and L[Y|X] as projections

{e+dX, e, d € R}

. i . . - 4
V= L[y|x] {9(X),():R— R}~

L[Y|X] is the projection of Y on {a+ bX,a,b e R}: LLSE
E[Y|X] is the projection of Y on {g(X),g(-) : ® — R}: MMSE.




Summary

‘ Conditional Expectation ‘

» Definition: E[Y|X]: =Y, yPr[Y = y|X = x]
» Properties: Linearity,
Y — E[Y|X] L h(X); E[E[Y|X]] = E[Y]
» Some Applications:
> Calculating E[Y|X]
> Diluting
> Mixing
> Rumors
» Wald

» MMSE: E[Y|X] minimizes E[(Y — g(X))?] over all g(-)




