
CS70: Jean Walrand: Lecture 31.

Nonlinear Regression

1. Review: joint distribution, LLSE
2. Quadratic Regression
3. Definition of Conditional expectation
4. Properties of CE
5. Applications: Diluting, Mixing, Rumors
6. CE = MMSE

Review

Definitions Let X and Y be RVs on Ω.

I Joint Distribution: Pr [X = x ,Y = y ]

I Marginal Distribution: Pr [X = x ] = ∑y Pr [X = x ,Y = y ]

I Conditional Distribution: Pr [Y = y |X = x ] = Pr [X=x ,Y=y ]
Pr [X=x ]

I LLSE: L[Y |X ] = a + bX where a,b minimize E [(Y −a−bX )2].

We saw that

L[Y |X ] = E [Y ] +
cov(X ,Y )

var [X ]
(X −E [X ]).

Recall the non-Bayesian and Bayesian viewpoints.

Nonlinear Regression: Motivation

There are many situations where a good guess about Y given X is
not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level,
cancer risk).

Our goal: explore estimates Ŷ = g(X ) for nonlinear functions g(·).

Quadratic Regression
Let X ,Y be two random variables defined on the same probability
space.

Definition: The quadratic regression of Y over X is the random
variable

Q[Y |X ] = a + bX + cX 2

where a,b,c are chosen to minimize E [(Y −a−bX −cX 2)2].

Derivation: We set to zero the derivatives w.r.t. a,b,c. We get

0 = E [Y −a−bX −cX 2]

0 = E [(Y −a−bX −cX 2)X ]

0 = E [(Y −a−bX −cX 2)X 2]

We solve these three equations in the three unknowns (a,b,c).

Note: These equations imply that E [(Y −Q[Y |X ])h(X )] = 0 for any
h(X ) = d + eX + fX 2. That is, the estimation error is orthogonal to all
the quadratic functions of X . Hence, Q[Y |X ] is the projection of Y
onto the space of quadratic functions of X .

Conditional Expectation

Definition Let X and Y be RVs on Ω. The conditional
expectation of Y given X is defined as

E [Y |X ] = g(X )

where

g(x) := E [Y |X = x ] := ∑
y

yPr [Y = y |X = x ].

Fact
E [Y |X = x ] = ∑

ω
Y (ω)Pr [ω|X = x ].

Proof: E [Y |X = x ] = E [Y |A] with A = {ω : X (ω) = x}.

Deja vu, all over again?

Have we seen this before? Yes.

Is anything new? Yes.

The idea of defining g(x) = E [Y |X = x ] and then
E [Y |X ] = g(X ).

Big deal? Quite! Simple but most convenient.

Recall that L[Y |X ] = a + bX is a function of X .

This is similar: E [Y |X ] = g(X ) for some function g(·).
In general, g(X ) is not linear, i.e., not a + bX . It could be that
g(X ) = a + bX + cX 2. Or that g(X ) = 2sin(4X ) + exp{−3X}. Or
something else.



Properties of CE

E [Y |X = x ] = ∑
y

yPr [Y = y |X = x ]

Theorem
(a) X ,Y independent⇒ E [Y |X ] = E [Y ];

(b) E [aY + bZ |X ] = aE [Y |X ] + bE [Z |X ];

(c) E [Yh(X )|X ] = h(X )E [Y |X ],∀h(·);
(d) E [h(X )E [Y |X ]] = E [h(X )Y ],∀h(·);
(e) E [E [Y |X ]] = E [Y ].

Proof:

(a),(b) Obvious
(c) E [Yh(X )|X = x ] = ∑

ω
Y (ω)h(X (ω)Pr [ω|X = x ]

= ∑
ω

Y (ω)h(x)Pr [ω|X = x ] = h(x)E [Y |X = x ]

Properties of CE

E [Y |X = x ] = ∑
y

yPr [Y = y |X = x ]

Theorem
(a) X ,Y independent⇒ E [Y |X ] = E [Y ];
(b) E [aY + bZ |X ] = aE [Y |X ] + bE [Z |X ];
(c) E [Yh(X )|X ] = h(X )E [Y |X ],∀h(·);
(d) E [h(X )E [Y |X ]] = E [h(X )Y ],∀h(·);
(e) E [E [Y |X ]] = E [Y ].

Proof: (continued)
(d) E [h(X )E [Y |X ]] = ∑

x
h(x)E [Y |X = x ]Pr [X = x ]

= ∑
x

h(x)∑
y

yPr [Y = y |X = x ]Pr [X = x ]

= ∑
x

h(x)∑
y

yPr [X = x ,y = y ]

= ∑
x ,y

h(x)yPr [X = x ,y = y ] = E [h(X )Y ].

Properties of CE

E [Y |X = x ] = ∑
y

yPr [Y = y |X = x ]

Theorem
(a) X ,Y independent⇒ E [Y |X ] = E [Y ];
(b) E [aY + bZ |X ] = aE [Y |X ] + bE [Z |X ];
(c) E [Yh(X )|X ] = h(X )E [Y |X ],∀h(·);
(d) E [h(X )E [Y |X ]] = E [h(X )Y ],∀h(·);
(e) E [E [Y |X ]] = E [Y ].

Proof: (continued)
(e) Let h(X ) = 1 in (d).

Properties of CE

Theorem
(a) X ,Y independent⇒ E [Y |X ] = E [Y ];
(b) E [aY + bZ |X ] = aE [Y |X ] + bE [Z |X ];
(c) E [Yh(X )|X ] = h(X )E [Y |X ],∀h(·);
(d) E [h(X )E [Y |X ]] = E [h(X )Y ],∀h(·);
(e) E [E [Y |X ]] = E [Y ].

Note that (d) says that

E [(Y −E [Y |X ])h(X )] = 0.

We say that the estimation error Y −E [Y |X ] is orthogonal to
every function h(X ) of X .

We call this the projection property. More about this later.

Application: Calculating E [Y |X ]

Let X ,Y ,Z be i.i.d. with mean 0 and variance 1. We want to
calculate

E [2 + 5X + 7XY + 11X 2 + 13X 3Z 2|X ].

We find

E [2 + 5X + 7XY + 11X 2 + 13X 3Z 2|X ]

= 2 + 5X + 7XE [Y |X ] + 11X 2 + 13X 3E [Z 2|X ]

= 2 + 5X + 7XE [Y ] + 11X 2 + 13X 3E [Z 2]

= 2 + 5X + 11X 2 + 13X 3(var [Z ] + E [Z ]2)

= 2 + 5X + 11X 2 + 13X 3.

Application: Diluting

At each step, pick a ball from a well-mixed urn. Replace it with a blue
ball. Let Xn be the number of red balls in the urn at step n. What is
E [Xn]?

Given Xn = m, Xn+1 = m−1 w.p. m/N (if you pick a red ball) and
Xn+1 = m otherwise. Hence,

E [Xn+1|Xn = m] = m− (m/N) = m(N−1)/N = Xnρ,

with ρ := (N−1)/N. Consequently,

E [Xn+1] = E [E [Xn+1|Xn]] = ρE [Xn],n ≥ 1.

=⇒ E [Xn] = ρn−1E [X1] = N(
N−1

N
)n−1,n ≥ 1.



Diluting

Here is a plot:

Diluting

By analyzing E [Xn+1|Xn], we found that
E [Xn] = N(N−1

N )n−1,n ≥ 1.

Here is another argument for that result.

Consider one particular red ball, say ball k . At each step, it
remains red w.p. (N−1)/N, when another ball is picked. Thus,
the probability that it is still red at step n is [(N−1)/N]n−1. Let

Yn(k) = 1{ball k is red at step n}.

Then, Xn = Yn(1) + · · ·+ Yn(N). Hence,

E [Xn] = E [Yn(1) + · · ·+ Yn(N)] = NE [Yn(1)]

= NPr [Yn(1) = 1] = N[(N−1)/N]n−1.

Application: Mixing

At each step, pick a ball from each well-mixed urn. We transfer them
to the other urn. Let Xn be the number of red balls in the bottom urn
at step n. What is E [Xn]?

Given Xn = m, Xn+1 = m + 1 w.p. p and Xn+1 = m−1 w.p. q

where p = (1−m/N)2 (B goes up, R down) and q = (m/N)2 (R goes
up, B down).

Thus,
E [Xn+1|Xn] = Xn + p−q = Xn + 1−2Xn/N = 1 + ρXn, ρ := (1−2/N).

Mixing

We saw that E [Xn+1|Xn] = 1 + ρXn, ρ := (1−2/N). Hence,

E [Xn+1] = 1 + ρE [Xn]

E [X2] = 1 + ρN;E [X3] = 1 + ρ(1 + ρN) = 1 + ρ + ρ2N
E [X4] = 1 + ρ(1 + ρ + ρ2N) = 1 + ρ + ρ2 + ρ3N
E [Xn] = 1 + ρ + · · ·+ ρn−2 + ρn−1N.

Hence,

E [Xn] =
1−ρn−1

1−ρ
+ ρn−1N,n ≥ 1.

Application: Mixing

Here is the plot.

Application: Going Viral
Consider a social network (e.g., Twitter).

You start a rumor (e.g., Walrand is really weird).

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

In this example, d = 4.



Application: Going Viral

Fact: Let X = ∑∞
n=1 Xn. Then, E [X ] < ∞ iff pd < 1.

Proof:
Given Xn = k , Xn+1 = B(kd ,p). Hence, E [Xn+1|Xn = k ] = kpd .

Thus, E [Xn+1|Xn] = pdXn. Consequently, E [Xn] = (pd)n−1,n ≥ 1.

If pd < 1, then E [X1 + · · ·+ Xn]≤ (1−pd)−1 =⇒ E [X ]≤ (1−pd)−1.

If pd ≥ 1, then for all C one can find n s.t.
E [X ]≥ E [X1 + · · ·+ Xn]≥ C.

In fact, one can show that pd ≥ 1 =⇒ Pr [X = ∞] > 0.

Application: Going Viral

An easy extension: Assume that everyone has an independent
number Di of friends with E [Di ] = d . Then, the same fact holds.

To see this, note that given Xn = k , and given the numbers of friends
D1 = d1, . . . ,Dk = dk of these Xn people, one has
Xn+1 = B(d1 + · · ·+ dk ,p). Hence,

E [Xn+1|Xn = k ,D1 = d1, . . . ,Dk = dk ] = p(d1 + · · ·+ dk ).

Thus, E [Xn+1|Xn = k ,D1, . . . ,Dk ] = p(D1 + · · ·+ Dk ).

Consequently, E [Xn+1|Xn = k ] = E [p(D1 + · · ·+ Dk )] = pdk .

Finally, E [Xn+1|Xn] = pdXn, and E [Xn+1] = pdE [Xn].

We conclude as before.

Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald’s Identity

Assume that X1,X2, . . . and Z are independent, where
Z takes values in {0,1,2, . . .}
and E [Xn] = µ for all n ≥ 1.

Then,
E [X1 + · · ·+ XZ ] = µE [Z ].

Proof:

E [X1 + · · ·+ XZ |Z = k ] = µk .

Thus, E [X1 + · · ·+ XZ |Z ] = µZ .

Hence, E [X1 + · · ·+ XZ ] = E [µZ ] = µE [Z ].

CE = MMSE
Theorem
E [Y |X ] is the ‘best’ guess about Y based on X .

Specifically, it is the function g(X ) of X that

minimizes E [(Y −g(X ))2].

CE = MMSE

Theorem CE = MMSE

g(X ) := E [Y |X ] is the function of X that minimizes
E [(Y −g(X ))2].
Proof:
Let h(X ) be any function of X . Then

E [(Y −h(X ))2] = E [(Y −g(X ) + g(X )−h(X ))2]

= E [(Y −g(X ))2] + E [(g(X )−h(X ))2]

+2E [(Y −g(X ))(g(X )−h(X ))].

But,

E [(Y −g(X ))(g(X )−h(X ))] = 0 by the projection property.

Thus, E [(Y −h(X ))2]≥ E [(Y −g(X ))2].

E [Y |X ] and L[Y |X ] as projections

L[Y |X ] is the projection of Y on {a + bX ,a,b ∈ℜ}: LLSE

E [Y |X ] is the projection of Y on {g(X ),g(·) : ℜ→ℜ}: MMSE.



Summary

Conditional Expectation

I Definition: E [Y |X ] := ∑y yPr [Y = y |X = x ]

I Properties: Linearity,
Y −E [Y |X ]⊥ h(X ); E [E [Y |X ]] = E [Y ]

I Some Applications:
I Calculating E [Y |X ]
I Diluting
I Mixing
I Rumors
I Wald

I MMSE: E [Y |X ] minimizes E [(Y −g(X ))2] over all g(·)


