CS70: Jean Walrand: Lecture 35.

 Continuous Probability 2]

Review: CDF and PDF.

Key idea: For a continuous RV, Pr[X = x] =0 for all x € R.
Examples: Uniform in [0, 1]; throw a dart in a target.
Thus, one cannot define Pr[outcome], then Pr[event].

A Picture

Prir< X <axz+4§

~ fx(x)d

1. Review: CDF, PDF 0
5 Examples Instead, one starts by defining Prevent].
3' PropeFr)ties Thus, one defines Pr[X € (—oo,x]] = PriX < x] =: Fx(x),x € R. T
. : 4

4. Expectation Then, one defines fx(x) = g Fx(x)- The pdf fx(x) is a nonnegative function that integrates to 1.
5. Expectation of Function Hence, fi(x)e ~ PriX € (x,x+é)] The cdf Fx(x) is the integral of fx.
6. Variance Fx(-) is the cumulative distribution function (CDF) of X.
7. Independent Continuous RVs fx(+) is the probability density function (PDF) of X.

Prix < X < x+ 98] = fx(x)d

X
PrIX < x] = Fu(x) = / f(u)du
Target Ula, b Expo(L)

Random Variable
y - Outcome

Uniform in |a, b

pdf

The exponential distribution with parameter A > 0 is defined by
fx(x) = L& *1{x >0}

0, ifx<0
FX(X)_{ 1—e* ifx>0.
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Note that Pr[X > t] = e *! for t > 0.




Some Properties

1. Expo is memoryless. Let X = Expo(A). Then, for s,t > 0,

PriX >t+s]
Pr[X > §]

e Mt+s)

= e—As =€

= PriX>1].

PriX>t+s|X>s] =

At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then
PriY >t] = PrlaX>t]=Pr[X>t/a
e MUa) — g=(/At — pr(Z > ] for Z = Expo(A/a).
Thus, a x Expo(1) = Expo(A/a).
Also, Expo(2) = 1 Expo(1).

More Properties

3. Scaling Uniform. Let X = U[0,1] and Y = a+ bX where b > 0.
Then,

PriYe(y,y+8)] = Pr[a+bx6(y,y+6)]:Pr[xe(u,&b‘a)]
_ y-ay-a 6, 1 y—a
= Pr[Xe(T,T+B)]_b8,for0<—b <A1
= 16,fora<y<a+bA

b
Thus, fy(y) = 1 fora< y < a+b. Hence, Y = Ula,a+ b).

Replacing b by b— a we see that, if X = U[0,1], then Y = a+ (b—a)X
is Ula, b].

Some More Properties

4. Scaling pdf. Let fx(x) be the pdf of X and Y = a-+ bX where
b>0. Then

PY € (yy+8)] = PriatbXe(yy+8)=prixe (Y 2 Y 0=2
B y-ay-a 6, . y-a@d
= Pr[Xe(T,T+B)]_fX(—)B.
Now, the left-hand side is fy(y)d. Hence,
1. y-a
) = 5 x50

)]

Expectation
Definition: The expectation of a random variable X with pdf f(x) is

defined as oo
E[X] = / xfx(x)dx.
Justification: Say X = né w.p. fx(n8)é for n € Z. Then,

E[X] = L (n8)PriX = nd] = L (n8)x(n8)6 = |~ xix(x)d.

Indeed, for any g, one has [ g(x)dx ~ ¥ ,g(nd)8. Choose
9(x) = xfx(x).

_g(nd)s

g(nd) -,

{ 9(x)

Examples of Expectation

1. X =U[0,1]. Then, fx(x) = 1{0 < x < 1}. Thus,

. , 2
E[X] :/mxfx(x)dx:/o1 x1dx = [%]0 2

2. X = distance to 0 of dart shot uniformly in unit circle. Then
fx(x) =2x1{0 < x < 1}. Thus,

oo 1 3
E[X]= l[mxfx(x)dx - /0 X.2xax = [%}; - g

Examples of Expectation
3. X = Expo(A). Then, fx(x) = Ae~**1{x > 0}. Thus,

ElX] = /mxﬁ,e’“dx - /w xde .
0 Jo

Recall the integration by parts formula:

/abu(x)dv(x) = [uev(x)]°-

Thus,

/wxde’“ = [Xe’“]‘(’;f/m e *¥dx
Jo o

Hence, E[X] = 1.




Multiple Continuous Random Variables

One defines a pair (X, Y) of continuous RVs by specifying fx y(x,y)
for x,y € R where

fx y(x,y)dxdy = Pr[X € (x,x+dx),Y € (y +dy)].

The function fx y(x,y) is called the joint pdf of X and Y.
Example: Choose a point (X, Y) uniformly in the set A C %2. Then

1
fxy(x.y) = W1 {(x,y) e A}

where |A| is the area of A.

Interpretation. Think of (X, Y) as being discrete on a grid with mesh

size € and Pr[X = me, Y = ne] = fx y(me, ne)e.

Extension: X = (Xj,..., Xn) with fx(x).

Example of Continuous (X, Y)
Pick a point (X, Y) uniformly in the unit circle.

X
Thus, fry(x,y) = 11{x2+y2 <1}.
Consequently,
Pr[X>O.Y>0]:jI
Pr[X<O,Y>O]:jE
PriX?+Y2<r?=r?

PAX > Y] = 15

Independent Continuous Random Variables
Definition: The continuous RVs X and Y are independent if

PriX € A Y € B = Pr[X € AlPr[Y € B],VA,B.

Theorem: The continuous RVs X and Y are independent if and only
if
fx.y(X,y) = fx(X)fy(y).
Proof: As in the discrete case.
Definition: The continuous RVs Xj,..., X, are mutually independent
if
Pr(Xi € Aq,...,Xn € Ap] = Pr[Xi € Ay]--- Pr[Xs € An],VA1,...,An.

Theorem: The continuous RVs Xj,..., X, are mutually independent if
and only if
(X153 Xn) = fxy (X1) - Fx, (Xn)-

Proof: As in the discrete case.

Examples of Independent Continuous RVs

1. Minimum of Independent Expo. Let X = Expo(1) and
Y = Expo(u) be independent RVs.

Recall that Pr[X > u] = e *Y. Then
Primin{X,Y}>u] = Pr[X>u,Y>u]l=Pr[X>u]Pr[Y > u]
e—lu x @ MU — e—(lﬂ;)uA
This shows that min{X, Y} = Expo(A + ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.

2. Minimum of Independent U[0,1]. Let X, Y =[0,1] be
independent RVs. Let also Z=min{X, Y}. What is fz?

One has
PriZ > u] = Pr[X > u]Pr[Y > u] = (1 — u)?.

Thus Fz(u)=PriZ <u]l=1-(1-u)?
Hence, fz(u) = & Fz(u) = 2(1 — u),u € [0,1]. In particular,
E[Z] = J§ ufz(u)du= [ 2u(1 —u)du=2} —2% = 1.

Expectation of Function of RVs

Definitions: (a) The expectation of a function of a random variable is
defined as

E[h(X)] = L : h(x)fx(x)ax.

(b) The expectation of a function of multiple random variables is
defined as

Eh(X)] = / / A(X)f(X)dx; - - Ot
Justification: Say X = né w.p. fx(n8)s. Then,

ETh(X)] = Y. h(n8)PrIX = n3] = ¥ h(n8) i (n8)5 = /:, h(x)fx(x)dx.

Indeed, for any g, one has [ g(x)dx ~ Y ,g(nd)s. Choose
9(x) = h(x)tx(x).
The case of multiple RVs is similar.

Examples of Expectation of Function
Recall: E[h(X)] = [, h(x)fx(x)dx.
1. Let X = U[0,1]. Then
Xn+1 1 1
nr T e

E[X") = = /01 Xndx = [

2. Let X=UJ[0,1] and 6 > 0. Then

1 .
E[cos(6X)] = /0 cos(6x)dx = [% sin(gx)]:) — M
3. Let X = Expo(1). Then
E[X" = /wx"/le”“‘dx: 7/'wxndeflx
0 0

_ 7[Xne—lx}:+/we—lxdxn

Jo
_ ﬁ « n—1 —AX _ﬁ n—1
= )L/Ox A& Max = ZEX™T].

Since E[X?] = 1, this implies by induction that E[X"] = 5.




Linearity of Expectation
Theorem Expectation is linear.
Proof: ‘As in the discrete case.
Example 1: X = U[a, b]. Then
(@) fx(x) = pz1{a< x < b}. Thus,

b1 1 X _ath
BX) = | 5% 55 2 )i

(b) X =a+(b—a)Y,Y = U[0,1]. Hence,

EIX]=a+(b—a)E[Y] = a+? - %bA
Example 2: X, Y are U[0,1]. Then

E[3X—2Y+5] :3E[X]—2E[Y]+5:31§—2%+5 =55

Expectation of Product of Independent RVs

Theorem If X, Y, X are mutually independent, then

E[XYZ] = E[X]E[Y]E[Z].

Proof: Same as discrete case.
Example: Let X, Y, Z be mutually independent and U[0,1]. Then

E[(X+2Y+32)?] = E[X?+4Y2419Z2 +4XY +6XZ+12YZ]

11 1 11 11 11
= §+4§+9§+4§§+6§§+12§§
14 22
= gt ~1017

Variance

Definition: The variance of a continuous random variable X is
defined as

var[X] = E((X - E(X))?) = E(X?) ~ (E(X))".

Example 1: X = U[0,1]. Then

11 1
var[X] = E[X?) - EX* = 5 - 4 = 13-

Example 2: X = Expo(1). Then E[X] = A~" and E[X?] = 2/(?).
Hence, var[X] =1/(1?).

Example 3: Let X, Y,Z be independent. Then
var[X+ Y + Z] = var[X] + var[ Y]+ var|Z],

as in the discrete case.

Summary

‘ Continuous Probability 2 ‘

-

. pdf: Pr[X € (x,x+ 8]] = fx(x)8.

. CDF: PriX < x] = Fx(x) = [*_fx(y)dy.

. Ula, b], Expo(2), target.

. Expectation: E[X] = [~ xfx(x)dx.

. Expectation of function: E[h(X)] = /. h(x)fx(x)dx.

. Variance: var[X] = E[(X — E[X])?] = E[X?] - E[X]?.

. fx(X)dxy - dxp = Pr[Xy € (X1, %1 +dX1),..., Xn € (Xn, Xn+ dXp)].
Xi,...,Xn are mutually independent iff fx = f, x --- x fx,.
. X mutually independent = E[X; --- Xp] = E[X4]--- E[Xn].
. E[h(X)] = [+ [ h(x)fx(x)dXq - - - dxp.

. Expectation is linear.
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