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Polynomials

A polynomial

P(X) = adxd+ad,1xd’1 .

-+ ap.
is specified by coefficients ay, ... ag-

P(x) contains point (a,b) if b= P(a).

Polynomials over reals: aj,...,ay € R, use x € R.

Polynomials P(x) with arithmetic modulo p: ' a; < {0,...,p—1}
and

d-1 .

P(x)=agx?+ag_1x?'---+ay (mod p),

forxe€{0,...,p—1}.

1A field is a set of elements with addition and multiplication operations,
with inverses. GF(p) = ({0,...,p—1},+ (mod p),* (mod p)).
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Polynomial: P(x) = agx*+---+ag (mod p)
P(x)

Finding an intersection.

x+2=3x+1 (mod 5)

= 2x=1 (mod 5) = x =3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!
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Fact: Exactly 1 degree < d polynomial contains d + 1 points. 2

Two points specify aline. d=1,1+1is 2!
Three points specify a parabola. d =2,2+1 =3.

Modular Arithmetic Fact: Exactly 1 degree < d polynomial with
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3 points determine a parabola.

P(x) = 0.5x% — x +1

8 P(x)=-3x2+1x+.5

Fact: Exactly 1 degree < d polynomial contains d + 1 points. 3

3Points with different x values.
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P(x)=—3x>+1x+.5

P(x) = —.6x%+1.9x — .1

There is P(x) contains blue points and any (0, y)!
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For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)

Subtract first from second..

m+b = 3 (mod 5)
m 1 (mod 5)

Backsolve: b=2 (mod 5). Secret is 2.

And the line is...
X+2 modb>5.
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Subtract first from second.

2m=4 (mod 11)

Multiplicative inverse of 2 (mod 11) is6: 6x2=12=1 (mod 11)
Multiply both sides by 6.

12m=24 (mod 11)
m=2 (mod 11)

Backsolve: 2+b=5 (mod 11). Or b=3 (mod 11).
Secret is 3.



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=ax+ai+a = 2 (modb5)



Quadratic
For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4ax+2a1+a = 4 (mod>5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

a+ay+a 2 (mod 5)
3a1+2a = 1 (mod5)
4a;+2a = 2 (mod5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+23 = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

a+ay+a 2 (mod 5)
3a1+2a = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.
a = (2—4(ap))2"



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

a=(2-4(a))2 ' =(-2)(2°")



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

a0 =(2-4(a))27' =(-2)(27) =(3)(3)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ap=(2-4(a1))27' =(-2)(27") = (3)(3) =9=4 (mod 5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a>+2a;+ay = 4 (mod5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ay=(2—-4(ay))27"=(-2)(27")=(38)(8) =9 =4 (mod 5)
a=2—-1-4=2 (mod 5)
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For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a>+2a;+ay = 4 (mod5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
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Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a>+2ay+ag 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ap=(2-4(a1))27' =(-2)(27") = (3)(3) =9=4 (mod 5)

a=2—-1-4=2 (mod 5).

So polynomial is 2x2 + 1x+4 (mod 5)
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In general: Linear System.

Given points: (x1,¥1); (X2, ¥2) - (Xk, Yk )-
Solve...

a1x '+ +a = y (mod p)
a1 x5 ' +---+ay = y» (mod p)
axk 1xf ' +-+a = yx (mod p)

Will this always work?
As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree < d polynomial with
arithmetic modulo prime p contains d + 1 pts.
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Another Construction: Interpolation!

For a quadratic, ax? + ay x + ap hits (1,3);(2,4);(3,0).
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Interpolation: in general.

Given points: (x1,y1); (X2,¥2) - (Xk, Yk)-

Ai(x) = Mjx = %) :
[T (Xi — X;)

Numerator is 0 at x; # x;.

Denominator makes it 1 at x;.

And..

P(x) = y1A1(X) + y2 Do (X) + - -+ Yk Ak(X).

hits points (x1,y1); (x2,¥2) -~ (X, Yk)-
Construction proves the existence of a degree d polynomial!
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Interpolation: in pictures.

Points: (1,3.2), (2,1.3), (3,1.8).

Fany
vy

g \J
© l .

Aq(x)  Ao(x)  Ag(x)
Scale each A; function and add to contain points.
P(x)=38.2 A1(x)+1.3A5(x)+1.8A3(x)

&
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Construction proves the existence of a degree d polynomial that
contains points!

Is it the only degree d polynomial that contains the points?
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Uniqueness Fact. At most one degree d polynomial hits d + 1 points.
Proof:

Roots fact: Any degree d polynomial has at most d roots.
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Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d + 1 points.
Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) — P(x) has d+ 1 roots and is degree d.

Contradiction.

Must prove Roots fact.
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Polynomial Division.
Divide 4x2 — 3x +2 by (x —3) modulo 5.

- (4x72 - 2 Xx)
4 x + 2
- (4 x - 2)

4x2 - 3x+2=(x—3)(4x+4)+4 (mod 5)
In general, divide P(x) by (x — a) gives Q(x) and remainder r.
Thatis, P(x)=(x—a)Q(x)+r
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Lemma 1: P(x) has root a iff P(x)/(x —a) has remainder 0:
P(x) = (x —a)Q(x).

Proof: P(x) = (x—a)Q(x)+r.
Plugin a: P(a) =r. Itis aroot if and only if r = 0.

Lemma 2: P(x) has d roots; rq,...,ry then
P(x)=c(x—n)(x—=rz)---(x—rg).

Proof Sketch: By induction.
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Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x —a) has remainder 0:
P(x) = (x —a)Q(x).

Proof: P(x) = (x—a)Q(x)+r.
Plugin a: P(a) =r. Itis aroot if and only if r = 0.

Lemma 2: P(x) has d roots; rq,...,ry then
P(x)=c(x—n)(x—=rz)---(x—rg).

Proof Sketch: By induction.
Induction Step: P(x) = (x —r)Q(x) by Lemma 1.

P(x)=0if and only if (x —ry) is 0 or Q(x) = 0.
ab=0 = a=0or b=0in field.
Root either at ry or root of Q(x).

Q(x) has smaller degree and r»,...ry are roots.
Use the induction hypothesis.

d+ 1 roots implies degree is at least d+ 1.
Roots fact: Any degree d polynomial has at most d roots.
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Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime mis a finite field denoted by F, or
GF(m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.



